Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


НОВОСТИ НАУКИ И ТЕХНИКИ, НОВИНКИ ЭЛЕКТРОНИКИ
Бесплатная техническая библиотека / Лента новостей

Найден метод значительного увеличения сил оптического взаимодействия

19.10.2017

Известно, что свет представляет собой поток фотонов. И если два световода, оптоволоконных проводника, к примеру, расположены в непосредственной близости друг от друга, то движение фотонов заставляет эти световоды притягиваться или отталкиваться друг от друга. Это влияние проводников возникает из-за так называемых сил оптического взаимодействия, но эффект их действия является чрезвычайно слабым для того, чтобы его можно было использовать на практике.

Физики из Технологического университета Чалмерса и Свободного университета Брюсселя нашли метод значительного увеличения оптической силы. Этот метод открывает перед учеными массу возможностей в области нанотехнологий, в разработке новых оптоэлектронных устройств и датчиков.

Для того, чтобы заставить свет вести себя абсолютно новым способом, ученые разработали световоды из искусственного материала, структура которого позволяет "обманывать" фотоны. Структура этого материала вынуждает все фотоны потока света сместиться и двигаться, концентрируясь только возле одной стороны волновода. Когда фотоны, двигающиеся в соседнем волноводе, делают так же, то при определенном взаимном расположении волноводов сила взаимодействия между ними увеличивается в 10 раз.

"Фотонам обычно безразлично, по какому участку волновода они движутся" - рассказывает Филипп Тассен (Philippe Tassin), профессор из Технологического университета Чалмерса, - "Мы нашли способ обмана фотонов, заключенный в структуре метаматериала, который вынуждает их группироваться в определенной области внутренней поверхности волновода".

Увеличение концентрации фотонов на краю волновода и увеличение сил взаимодействия между волноводами может быть использовано для создания крошечных нанодвигателей. Такие нанодвигатели, работающие за счет энергии света, могут обеспечивать работу наномеханизмов, выполняющих различную работу, по сортировке живых клеток и наночастиц, к примеру, и нанороботов, действующих прямо внутри тела человека.

"Метод концентрации фотонов открывает новые возможности для использования волноводов в качестве "искусственных мускулов" крошечных механизмов" - рассказывает Винсент Джинис (Vincent Ginis), ученый из Свободного университета Брюсселя, - "Весьма увлекательно видеть, как искусственные материалы со сложной структурой очень могут повлиять, резко изменить принципы поведения света и его основные параметры. И, я надеюсь, нам удастся найти еще множество областей применения света, "измененного" материалами, по которым он движется в данный момент времени".

<< Назад: Доверие зависит от голоса 19.10.2017

>> Вперед: Первый 5G-смартфон 18.10.2017

Последние новости науки и техники, новинки электроники:

Новый взляд на магнитное поле Земли 31.10.2025

Магнитное поле Земли долгое время считалось относительно стабильной структурой с предсказуемой полярностью. Однако последние исследования японских ученых показывают, что электрическая организация магнитосферы гораздо сложнее и динамичнее, чем предполагалось ранее. Команда исследователей из Киотского, Нагояского и Кюсюского университетов обнаружила, что заряженные области магнитосферы обладают противоположной полярностью по сравнению с традиционными представлениями. Так, утренняя сторона магнитного щита имеет отрицательный заряд, тогда как вечерняя - положительный, вопреки прежним теориям. Юсуке Эбихара из Киотского университета отмечает, что "электрическая сила и распределение зарядов являются следствием, а не причиной движения плазмы". Исследователи пришли к этим выводам с помощью масштабного магнитогидродинамического моделирования, имитирующего взаимодействие солнечного ветра с геомагнитным полем Земли. Моделирование позволило в деталях проследить, как потоки плазмы формируют э ...>>

Влияние белка PF4 на старение крови 31.10.2025

С возрастом наш организм претерпевает множество изменений, в том числе на уровне крови и иммунной системы. Недавние исследования показали, что ключевым фактором этих изменений может быть белок PF4, или platelet factor 4, который играет важную роль в регуляции стволовых клеток костного мозга. Американские ученые из Университета Иллинойса в Чикаго обнаружили, что с возрастом уровень PF4 значительно снижается. Это ослабление контроля над кроветворными стволовыми клетками приводит к нарушению их работы и повышает вероятность развития воспалительных процессов, онкологических заболеваний крови и сердечно-сосудистых проблем. В молодом организме PF4 выполняет функцию "регулятора роста": он контролирует распределение и деление кроветворных стволовых клеток, не позволяя им чрезмерно размножаться. С возрастом эта система контроля ослабевает, клетки начинают делиться чаще, накапливают генетические мутации и постепенно теряют способность создавать полноценные лимфоциты, что ослабляет иммуните ...>>

Музыка юности остается с нами навсегда 30.10.2025

Музыка сопровождает человека всю жизнь, но некоторые мелодии и песни оставляют особенно глубокий след в памяти. Ученые давно замечали, что композиции из подросткового возраста вызывают сильные эмоции даже спустя десятилетия, и недавно международная команда исследователей под руководством Университета Ювяскюля (Финляндия) подтвердила этот эффект научно. В исследовании приняли участие около 2000 человек из 84 стран. Ученые выявили явление, которое они назвали "пиком воспоминаний": эмоциональная привязка к музыке достигает максимума примерно в 17 лет. Именно песни этого периода чаще всего остаются значимыми и вызывают яркие эмоции долгие годы спустя. Интересно, что у мужчин и женщин наблюдаются разные временные рамки этого пика. У мужчин он приходится примерно на 16 лет, тогда как у женщин - на 19. Исследователи объясняют это различие особенностями формирования музыкальной идентичности: юноши чаще ищут самостоятельность и бунт, а девушки связывают музыку с личными отношениями и пере ...>>

Сплав Cr-Mo-Si с уникальными свойствами 30.10.2025

Разработка материалов, способных работать в экстремальных условиях, остается одной из ключевых задач современной инженерии. Особенно это важно для авиации и энергетики, где повышение термостойкости компонентов напрямую влияет на эффективность и надежность оборудования. Международная группа исследователей объявила о создании нового металлического сплава, обладающего уникальным сочетанием свойств: высокой термостойкостью, устойчивостью к коррозии и сохранением пластичности даже при комнатной температуре. Новый сплав содержит хром, молибден и всего 3 атомных процента кремния. Именно кремний способствует формированию плотного слоя оксида хрома на поверхности металла, который действует как невидимый барьер против кислорода и азота при высоких температурах. В отличие от предыдущих сплавов, этот защитный слой формируется без хрупких силицидов, которые обычно снижали пластичность и делали материалы склонными к трещинам. По словам профессора Мартина Гайльмайера из Института технологий Кар ...>>

Открыт лед, замерзающий при комнатной температуре 29.10.2025

Изучение воды продолжает приносить удивительные открытия: несмотря на то, что эта жидкость кажется хорошо известной, она способна проявлять необычные свойства в экстремальных условиях. Международная команда ученых недавно обнаружила новый вид льда, который формируется при комнатной температуре, если вода подвергается сильному давлению. Это открытие не только расширяет наши знания о воде, но и помогает лучше понять процессы в недрах планет и их спутников. Исследователи из Корейского института стандартов и науки совместно с европейскими коллегами, работающими на рентгеновском лазере на свободных электронах (XFEL) в Германии, провели серию экспериментов с водой в динамической ячейке с алмазными наковальнями. Давление изменялось от 0,001 гигапаскаля до 120 гигапаскалей в секунду - в миллионы раз выше атмосферного, при этом температура поддерживалась около 25 °C, близкой к комнатной. В течение сотен циклов ученые наблюдали, как вода многократно замерзает и тает, фиксируя каждый этап с ис ...>>

Случайная новость из Архива

Хранилища водорода - путь к энергетической безопасности 15.04.2012

По мнению специалистов компании Siemens, огромные хранилища водорода - это единственный способ обеспечить энергетическую безопасность Германии и перейти к масштабному использованию солнечных и ветряных электростанций.

Если Германия хочет реализовать свои амбициозные планы - получать треть электроэнергии из возобновляемых источников к 2020 году и до 80% к 2050 году, ей придется найти способ хранить огромное количество электроэнергии. Иначе будет невозможно компенсировать нестабильный выход энергии из возобновляемых источников, вроде солнечных панелей и ветряков. В компании Siemens считают, что сегодня для этого существует только одна подходящая технология: электролиз воды и производство водородного топлива. Водород можно превращать в электроэнергию на газовых электростанциях, к тому же, им можно заправлять автомобили и даже самолеты.

Сегодня производство водорода неэффективно: во время электролиза и последующего сгорания водорода теряется две трети энергии. Однако для выполнения масштабных планов Германии другого приемлемого способа пока нет, и Siemens предлагает свою концепцию водородной энергетики. В отличие от обычных промышленных электролизеров, которые нуждаются в устойчивом энергоснабжении, новая система Siemens может работать в условиях неустойчивой мощности ветряков и солнечных панелей. Она основана на протонообменной мембране, похожей на ту, что сегодня используется в автомобильных топливных элементах. Электролизер Siemens может работать при перепадах мощности в 2-3 раза и идеально подходит для всплесков мощности ветряков в особо ветреные дни.

Последнее особенно актуально, поскольку из-за недостаточной мощности линий электропередач Германия теряет около 20% энергии, вырабатываемой ветряками. Сейчас хранить эту энергию попросту негде. Самый доступный способ сохранить электричество - это закачивать воду на большую высоту, а потом спускать ее, приводя в движение турбины генераторов. Однако данный метод годится только для горной местности и поэтому в равнинной Германии с его помощью "перекачивают" только около 40 гигаватт-часов. Столько ветряки и солнечные панели могут генерировать за один час ветреного и солнечного дня.

Современные аккумуляторы дороги и громоздки, поэтому они не могут решить проблему хранения гигантского количества энергии, необходимой Германии ночью или в безветренный день.

По расчетам специалистов Siemens, если Германия будет на 85% обеспечиваться энергией из возобновляемых источников, потребуется хранение энергии на уровне 30000 гигаватт-часов. В Siemens утверждают, что их электролизеры смогут превратить эту энергию в водород с эффективностью около 60%. От полученного в итоге количества энергии следует отнять еще 40% на потери во время обратного превращения водорода в электричество. Таким образом будет потеряна только треть "дармовой" энергии ветряков и солнечных панелей. Водород, необходимый для питания электростанций, может храниться в подземных пещерах и транспортироваться по существующим газопроводам или специальным трубам.

Смотрите полный Архив новостей науки и техники, новинок электроники


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025