Новый способ получения аэрографена
03.05.2015
Когда мы говорим о чем-то легком и невесомом, то часто употребляем прилагательное "воздушный". Однако воздух все равно обладает массой, хоть и небольшой - один кубометр воздуха весит немногим более килограмма. Можно ли создать твердый материал, который занимал бы собой, к примеру, кубический метр, но при этом весил бы меньше килограмма? Такую проблему решил еще в начале прошлого века американский химик и инженер Стивен Кистлер, который известен как изобретатель аэрогеля.
Созданная с помощью 3D печати макроструктура аэрографена придает ему уникальные механические свойства, при этом материал не теряет своей "графеновой" природы. Фото: Ryan Chen/LLNLСозданная с помощью 3D печати макроструктура аэрографена придает ему уникальные механические свойства, при этом материал не теряет своей "графеновой" природы
Наверное, у многих первая ассоциация со словом "гель" связана с каким-нибудь косметическим средством или бытовой химией. Хотя на самом деле гель - это вполне химический термин, которым называют систему, состоящую из трехмерной сетки макромолекул, своего рода каркаса, в пустотах которого находится жидкость. За счет этого молекулярного каркаса тот же гель для душа не растекается по ладони, а принимает осязаемую форму. Но назвать такой обычный гель воздушным никак нельзя - жидкость, которая составляет большую его часть, почти в тысячу раз тяжелее воздуха. Вот тут у экспериментаторов и возникла идея, как сделать ультралегкий материал. 
Если взять жидкий гель, и каким-то способом убрать из него воду, заменив ее на воздух, то в результате от геля останется только каркас, который будет обеспечивать твердость, но при этом практически не иметь веса. Такой материал и получил название аэрогеля. С момента его изобретения в 1930 году среди химиков началось своего рода соревнование по созданию самого легкого аэрогеля. Долгое время для его получения использовали в основном материал на основе диоксида кремния. Плотность таких кремниевых аэрогелей составляла от десятых до сотых долей грамма на кубический сантиметр. Когда в качестве материала стали использовать углеродные нанотрубки, то плотность аэрогелей удалось уменьшить еще практически на два порядка. Например, аэрографит имел плотность 0,18 мг/см3. На сегодняшний день пальма первенства самого легкого твердого материала принадлежит аэрографену, его плотность всего 0,16 мг/см3. Для наглядности, метровый куб, сделанный из аэрографена, весил бы 160 г, что в восемь раз легче воздуха.
Однако химиками движет отнюдь не только спортивный интерес, и графен в качестве материала для аэрогелей стали использовать совсем не случайно. Сам по себе графен обладает массой уникальных свойств, которые во многом обусловлены его плоской структурой. С другой стороны, аэрогели тоже имеют особенные характеристики, одна из которых - огромная площадь удельной поверхности, которая составляет сотни и тысячи квадратных метров на грамм вещества. Такая огромная площадь возникает из-за высокой пористости материала. Совместить специфические свойства графена с уникальной структурой аэрогелей у химиков уже получилось, но исследователям из Ливерморской национальной лаборатории для создания аэрографена зачем-то понадобился еще и 3D принтер.
Для того чтобы напечатать аэрогель, сперва потребовалось создать специальные чернила на основе оксида графена. Помимо того, что из них должен получится аэрографен, надо, чтобы такие чернила были пригодны для 3D печати. Решив эту задачу, химики получили в свои руки метод, по которому можно изготавливать аэрографен с нужной микроархитектурой. Это очень важно, поскольку кроме свойств, присущих графену, такой материал будет иметь еще и интересные физические свойства. Например, тот образец, который получили авторы исследования, оказался на удивление упругим - кубик из аэрографена можно было без вреда для материала сжимать в десять раз, при этом он не терял своих свойств при повторных сжатиях-растяжениях.
Способность к многократному сжатию отличает напечатанный аэрографен от полученного "обычным" путем. Одним из практических применений нового аэрографена могут стать гибкие электрические аккумуляторы, где большая внутренняя поверхность материала будет использована в качестве электрода, в то время как напечатанная структура придаст ему нужную гибкость.
<< Назад: Ловушка для вихря 03.05.2015
>> Вперед: MSP430FR5969 - производительный микроконтроллер с FRAM памятью 02.05.2015
 Последние новости науки и техники, новинки электроники:
Новый взляд на магнитное поле Земли
31.10.2025
Магнитное поле Земли долгое время считалось относительно стабильной структурой с предсказуемой полярностью. Однако последние исследования японских ученых показывают, что электрическая организация магнитосферы гораздо сложнее и динамичнее, чем предполагалось ранее.
Команда исследователей из Киотского, Нагояского и Кюсюского университетов обнаружила, что заряженные области магнитосферы обладают противоположной полярностью по сравнению с традиционными представлениями. Так, утренняя сторона магнитного щита имеет отрицательный заряд, тогда как вечерняя - положительный, вопреки прежним теориям. Юсуке Эбихара из Киотского университета отмечает, что "электрическая сила и распределение зарядов являются следствием, а не причиной движения плазмы".
Исследователи пришли к этим выводам с помощью масштабного магнитогидродинамического моделирования, имитирующего взаимодействие солнечного ветра с геомагнитным полем Земли. Моделирование позволило в деталях проследить, как потоки плазмы формируют э ...>>
Влияние белка PF4 на старение крови
31.10.2025
С возрастом наш организм претерпевает множество изменений, в том числе на уровне крови и иммунной системы. Недавние исследования показали, что ключевым фактором этих изменений может быть белок PF4, или platelet factor 4, который играет важную роль в регуляции стволовых клеток костного мозга.
Американские ученые из Университета Иллинойса в Чикаго обнаружили, что с возрастом уровень PF4 значительно снижается. Это ослабление контроля над кроветворными стволовыми клетками приводит к нарушению их работы и повышает вероятность развития воспалительных процессов, онкологических заболеваний крови и сердечно-сосудистых проблем.
В молодом организме PF4 выполняет функцию "регулятора роста": он контролирует распределение и деление кроветворных стволовых клеток, не позволяя им чрезмерно размножаться. С возрастом эта система контроля ослабевает, клетки начинают делиться чаще, накапливают генетические мутации и постепенно теряют способность создавать полноценные лимфоциты, что ослабляет иммуните ...>>
Музыка юности остается с нами навсегда
30.10.2025
Музыка сопровождает человека всю жизнь, но некоторые мелодии и песни оставляют особенно глубокий след в памяти. Ученые давно замечали, что композиции из подросткового возраста вызывают сильные эмоции даже спустя десятилетия, и недавно международная команда исследователей под руководством Университета Ювяскюля (Финляндия) подтвердила этот эффект научно.
В исследовании приняли участие около 2000 человек из 84 стран. Ученые выявили явление, которое они назвали "пиком воспоминаний": эмоциональная привязка к музыке достигает максимума примерно в 17 лет. Именно песни этого периода чаще всего остаются значимыми и вызывают яркие эмоции долгие годы спустя.
Интересно, что у мужчин и женщин наблюдаются разные временные рамки этого пика. У мужчин он приходится примерно на 16 лет, тогда как у женщин - на 19. Исследователи объясняют это различие особенностями формирования музыкальной идентичности: юноши чаще ищут самостоятельность и бунт, а девушки связывают музыку с личными отношениями и пере ...>>
Сплав Cr-Mo-Si с уникальными свойствами
30.10.2025
Разработка материалов, способных работать в экстремальных условиях, остается одной из ключевых задач современной инженерии. Особенно это важно для авиации и энергетики, где повышение термостойкости компонентов напрямую влияет на эффективность и надежность оборудования. Международная группа исследователей объявила о создании нового металлического сплава, обладающего уникальным сочетанием свойств: высокой термостойкостью, устойчивостью к коррозии и сохранением пластичности даже при комнатной температуре.
Новый сплав содержит хром, молибден и всего 3 атомных процента кремния. Именно кремний способствует формированию плотного слоя оксида хрома на поверхности металла, который действует как невидимый барьер против кислорода и азота при высоких температурах. В отличие от предыдущих сплавов, этот защитный слой формируется без хрупких силицидов, которые обычно снижали пластичность и делали материалы склонными к трещинам.
По словам профессора Мартина Гайльмайера из Института технологий Кар ...>>
Открыт лед, замерзающий при комнатной температуре
29.10.2025
Изучение воды продолжает приносить удивительные открытия: несмотря на то, что эта жидкость кажется хорошо известной, она способна проявлять необычные свойства в экстремальных условиях. Международная команда ученых недавно обнаружила новый вид льда, который формируется при комнатной температуре, если вода подвергается сильному давлению. Это открытие не только расширяет наши знания о воде, но и помогает лучше понять процессы в недрах планет и их спутников.
Исследователи из Корейского института стандартов и науки совместно с европейскими коллегами, работающими на рентгеновском лазере на свободных электронах (XFEL) в Германии, провели серию экспериментов с водой в динамической ячейке с алмазными наковальнями. Давление изменялось от 0,001 гигапаскаля до 120 гигапаскалей в секунду - в миллионы раз выше атмосферного, при этом температура поддерживалась около 25 °C, близкой к комнатной. В течение сотен циклов ученые наблюдали, как вода многократно замерзает и тает, фиксируя каждый этап с ис ...>>
  Случайная новость из Архива Разработано точнейшее сито для ионов
09.09.2021 
Исследователи научно-технологического университета имени короля Абдаллы (KAUST) показали, что параметры ионно-просеивающих полимерных мембран можно контролировать с высокой точностью.
 
 Известно, что механизм передачи нервных импульсов у животных и сокращение или расслабление мышц включают перенос ионов натрия и калия через мембраны. Если бы изготовленные мембраны смогли достичь подобной ионной селективности, стало бы возможно преобразовать многие технологии, например, очистки воды и добычи полезных ископаемых.
 
 Ионы образуются, когда атомы или молекулы теряют или приобретают электроны, тем самым приобретая положительный или отрицательный электрический заряд. Ионы натрия, лития или хлора имеют диаметр менее 1 нанометра (10-9 метров). 
 
 Исследователи использовали известные размеры ионов, чтобы определить мономеры, из которых можно конструировать мембрану. Мономер - это молекула, образующая соединения с другими частицами и входящая в состав полимера как его структурная единица. Например, этилен, как и другие молекулы углеводородов, является мономером. Сами же мембраны изготовили методом электрополимеризации - осаждения пленок из растворов мономеров на поверхности электропроводящих материалов. 
 
 Прежде чем удалось получить удачный результат, ученые перебрали больше сотни образцов. Однако полученные мембраны превзошли все ранее изготовленные в испытаниях с использованием растворов, содержащих ионы.
 
 Самое очевидное применение - удаление ионов солей из морской воды для производства питьевой. Мембраны, которые избирательно пропускают интересующие нас ионы, могут быть использованы как в новом поколении более точных и гибких сенсорных технологий, так и в батареях, также работающих за счет переноса ионов. 
 | 
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025