Человек может видеть в инфракрасном спектре
08.12.2014
Ученые из Вашингтонского университета выяснили, что при определенных условиях сетчатка человеческого глаза может видеть инфракрасный свет.
Исследователи заметили, что при высокой частоте инфракрасных импульсов клетки сетчатки получают двойную порцию света и в этот момент глаз может обнаружить свет, который выходит за пределы видимой области спектра. Данные, полученные в ходе экспериментов, могут быть использованы для стимуляции отдельных участков сетчатки в ходе ее диагностики.
Ученые использовали мощный инфракрасный лазер. В ходе экспериментов с лазерными импульсами различной длительности, которые содержали одинаковое количество фотонов, они обнаружили, что чем короче импульс, тем больше вероятность, что глаз его увидит. Фотон поглощается сетчаткой, которая затем создает фотопигмент, преобразующий свет в зрение, но обычно каждый из фотопигментов поглощает лишь один фотон.
Однако, если упаковать несколько фотонов в один короткий импульс быстро пульсирующего лазера, есть определенная вероятность, что один фотопигмент одновременно уловит два фотона и объединенная энергия двух квантов света активирует пигмент, и позволит глазу увидеть то, что обычно невидимо. Видимый спектр включает волны света длиной 400?720 нанометров, а если молекула пигмента в сетчатке одновременно улавливает пару фотонов длиной 1000 нанометров, частицы света доставляют то же количество энергии, что и один 500-нанометровый фотон, видимый в обычном спектре: таким образом мы можем видеть инфракрасный свет.
<< Назад: Запущена самая мощная солнечная электростанция 09.12.2014
>> Вперед: Поздний ужин вредит памяти 08.12.2014
 Последние новости науки и техники, новинки электроники:
Новый взляд на магнитное поле Земли
31.10.2025
Магнитное поле Земли долгое время считалось относительно стабильной структурой с предсказуемой полярностью. Однако последние исследования японских ученых показывают, что электрическая организация магнитосферы гораздо сложнее и динамичнее, чем предполагалось ранее.
Команда исследователей из Киотского, Нагояского и Кюсюского университетов обнаружила, что заряженные области магнитосферы обладают противоположной полярностью по сравнению с традиционными представлениями. Так, утренняя сторона магнитного щита имеет отрицательный заряд, тогда как вечерняя - положительный, вопреки прежним теориям. Юсуке Эбихара из Киотского университета отмечает, что "электрическая сила и распределение зарядов являются следствием, а не причиной движения плазмы".
Исследователи пришли к этим выводам с помощью масштабного магнитогидродинамического моделирования, имитирующего взаимодействие солнечного ветра с геомагнитным полем Земли. Моделирование позволило в деталях проследить, как потоки плазмы формируют э ...>>
Влияние белка PF4 на старение крови
31.10.2025
С возрастом наш организм претерпевает множество изменений, в том числе на уровне крови и иммунной системы. Недавние исследования показали, что ключевым фактором этих изменений может быть белок PF4, или platelet factor 4, который играет важную роль в регуляции стволовых клеток костного мозга.
Американские ученые из Университета Иллинойса в Чикаго обнаружили, что с возрастом уровень PF4 значительно снижается. Это ослабление контроля над кроветворными стволовыми клетками приводит к нарушению их работы и повышает вероятность развития воспалительных процессов, онкологических заболеваний крови и сердечно-сосудистых проблем.
В молодом организме PF4 выполняет функцию "регулятора роста": он контролирует распределение и деление кроветворных стволовых клеток, не позволяя им чрезмерно размножаться. С возрастом эта система контроля ослабевает, клетки начинают делиться чаще, накапливают генетические мутации и постепенно теряют способность создавать полноценные лимфоциты, что ослабляет иммуните ...>>
Музыка юности остается с нами навсегда
30.10.2025
Музыка сопровождает человека всю жизнь, но некоторые мелодии и песни оставляют особенно глубокий след в памяти. Ученые давно замечали, что композиции из подросткового возраста вызывают сильные эмоции даже спустя десятилетия, и недавно международная команда исследователей под руководством Университета Ювяскюля (Финляндия) подтвердила этот эффект научно.
В исследовании приняли участие около 2000 человек из 84 стран. Ученые выявили явление, которое они назвали "пиком воспоминаний": эмоциональная привязка к музыке достигает максимума примерно в 17 лет. Именно песни этого периода чаще всего остаются значимыми и вызывают яркие эмоции долгие годы спустя.
Интересно, что у мужчин и женщин наблюдаются разные временные рамки этого пика. У мужчин он приходится примерно на 16 лет, тогда как у женщин - на 19. Исследователи объясняют это различие особенностями формирования музыкальной идентичности: юноши чаще ищут самостоятельность и бунт, а девушки связывают музыку с личными отношениями и пере ...>>
Сплав Cr-Mo-Si с уникальными свойствами
30.10.2025
Разработка материалов, способных работать в экстремальных условиях, остается одной из ключевых задач современной инженерии. Особенно это важно для авиации и энергетики, где повышение термостойкости компонентов напрямую влияет на эффективность и надежность оборудования. Международная группа исследователей объявила о создании нового металлического сплава, обладающего уникальным сочетанием свойств: высокой термостойкостью, устойчивостью к коррозии и сохранением пластичности даже при комнатной температуре.
Новый сплав содержит хром, молибден и всего 3 атомных процента кремния. Именно кремний способствует формированию плотного слоя оксида хрома на поверхности металла, который действует как невидимый барьер против кислорода и азота при высоких температурах. В отличие от предыдущих сплавов, этот защитный слой формируется без хрупких силицидов, которые обычно снижали пластичность и делали материалы склонными к трещинам.
По словам профессора Мартина Гайльмайера из Института технологий Кар ...>>
Открыт лед, замерзающий при комнатной температуре
29.10.2025
Изучение воды продолжает приносить удивительные открытия: несмотря на то, что эта жидкость кажется хорошо известной, она способна проявлять необычные свойства в экстремальных условиях. Международная команда ученых недавно обнаружила новый вид льда, который формируется при комнатной температуре, если вода подвергается сильному давлению. Это открытие не только расширяет наши знания о воде, но и помогает лучше понять процессы в недрах планет и их спутников.
Исследователи из Корейского института стандартов и науки совместно с европейскими коллегами, работающими на рентгеновском лазере на свободных электронах (XFEL) в Германии, провели серию экспериментов с водой в динамической ячейке с алмазными наковальнями. Давление изменялось от 0,001 гигапаскаля до 120 гигапаскалей в секунду - в миллионы раз выше атмосферного, при этом температура поддерживалась около 25 °C, близкой к комнатной. В течение сотен циклов ученые наблюдали, как вода многократно замерзает и тает, фиксируя каждый этап с ис ...>>
  Случайная новость из Архива Двухпроводной цифровой датчик температуры TI LMT01
06.10.2015 
Компания Texas Instruments представила новый цифровой датчик температуры LMT01 с разрешающей способностью выше 0.1°С и работающий по двухпроводной линии. Температура выдается в виде количества импульсов, которое прямо пропорционально измеряемой температуре. Импульсы результата идут по тем же линиям что и питание датчика. Такой метод не требует формирования точных задержек и существенно упрощает программу микроконтроллера - достаточно подать питание на LMT01 и затем подсчитать число поступивших импульсов.
 
 В зависимости от температуры LMT01 выдает от 26 (-50°С) до 3218 импульсов (+150°С). Значение каждого импульса 0,0625°С. Импульсы следуют с частотой 88 кГц и могут быть подсчитаны разными способами: программно, в прерывании от изменения сигнала на порту или помощью таймера в режиме счетчика.
 
 Точность определения температуры LMT01 не хуже 0,5°С в диапазоне -20...90°C (0,7 °С во всем диапазоне от -50°C до 90°C). Датчик потребляет лишь 34 мкА во время преобразования, которое занимает максимум 54 мс, далее LMT01 выводит результаты преобразования в течение еще максимум 50 мс. Таким образом, полный цикл "измерение-чтение" укладывается в 104 мс (макс.) при этом импульсный ток не превышает 143 мкА, что позволяет с успехом применять LMT01 в батарейных устройствах. Напряжение питания датчика от 2 до 5,5 В (между выводами Vp и Vn).
 
 Благодаря цифровому характеру измерения, LMT01 не чувствителен к наводкам и может быть вынесен на расстояние до 2 метров от устройства. Число выданных импульсов пересчитывается в значение температуры по простой формуле:
 
 Температура (°С) = (Число импульсов / 16) - 50
 
 По своей идеологии, LMT01 близок к популярному датчику DS18B20, однако превосходит его по простоте управления, точности, потребляемому току и скорости преобразования. 
 | 
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025