Дизтопливо из сахара
22.11.2012
Ученые из Калифорнийского университета реанимировали "заброшенную" технологию превращения крахмала во взрывчатку и с ее помощью создали процесс, позволяющий производить дизельное топливо.
Методика производства дизельного топлива из продуктов бактериального брожения была разработана химиком Хаимом Вейцманом почти 100 лет назад. Она позволяет производить сочетание продуктов, которые содержат больше энергии на литр, чем этанол, который сегодня широко используется на транспорте и может стать коммерчески выгодным в течение 5-10 лет.
Процесс Вейцмана основан на жизнедеятельности бактерии Clostridium acetobutylicum, которая способствует превращению сахаров в ацетон, бутанол и этанол. Американские ученые усовершенствовали технологию с помощью нового катализатора и увеличили выход ацетона и бутанола. В итоге при ферментации смеси производится меньше этанола, зато больше длинноцепочечных углеводородов, который похожи на сочетание углеводородов в дизельном топливе. Эта технология хороша тем, что использует для производства топлива широко распространенное возобновляемое сырье, сахар или крахмал, и позволяет производить непосредственно топливо или химические компоненты необходимые для изготовления, например, пластмасс.
Испытания показали, что полученное новым способом топливо сгорает почти также, как и нефтяное дизтопливо, а значит - его можно смешивать с традиционным горючим. Новый процесс достаточно универсален и позволяет использовать широкий спектр возобновляемого сырья: от кукурузного сахара (глюкозы) и тростникового сахара (сахарозы) до крахмала, а также непродовольственного сырья (трава, ветки, солома и т.п.). При этом процесс можно настроить для получения различных углеводородов, включая легкие углеводороды похожие на бензин или топливо для реактивных двигателей.
Изначально Вейцман разработал свою технологию для производства пороха. Однако вскоре нефть стала доступнее и дешевле, и технология Вейцмана не получила распространение, поскольку была слишком неэффективной. Сегодня американские ученые смогли создать катализатор на основе палладия и фосфата калия. Катализатор эффективно связывает этанол и бутанол и преобразует их в альдегиды. Затем альдегиды вступают в реакцию с ацетоном и производят длинноцепочечные углеводороды.
Пока данная технология производит топливо более дорогое, чем нефтяное. Однако она может найти свою нишу, например, для снижения нефтяной зависимости. Кроме того, ученые ведут работу по замене дорогостоящих палладиевых катализаторов на более дешевые и эффективные, что сделает дизтопливо из сахара более конкурентноспособным.
<< Назад: Стволовые клетки из пробирки 23.11.2012
>> Вперед: Зрение с помощью звука 22.11.2012
 Последние новости науки и техники, новинки электроники:
Новый взляд на магнитное поле Земли
31.10.2025
Магнитное поле Земли долгое время считалось относительно стабильной структурой с предсказуемой полярностью. Однако последние исследования японских ученых показывают, что электрическая организация магнитосферы гораздо сложнее и динамичнее, чем предполагалось ранее.
Команда исследователей из Киотского, Нагояского и Кюсюского университетов обнаружила, что заряженные области магнитосферы обладают противоположной полярностью по сравнению с традиционными представлениями. Так, утренняя сторона магнитного щита имеет отрицательный заряд, тогда как вечерняя - положительный, вопреки прежним теориям. Юсуке Эбихара из Киотского университета отмечает, что "электрическая сила и распределение зарядов являются следствием, а не причиной движения плазмы".
Исследователи пришли к этим выводам с помощью масштабного магнитогидродинамического моделирования, имитирующего взаимодействие солнечного ветра с геомагнитным полем Земли. Моделирование позволило в деталях проследить, как потоки плазмы формируют э ...>>
Влияние белка PF4 на старение крови
31.10.2025
С возрастом наш организм претерпевает множество изменений, в том числе на уровне крови и иммунной системы. Недавние исследования показали, что ключевым фактором этих изменений может быть белок PF4, или platelet factor 4, который играет важную роль в регуляции стволовых клеток костного мозга.
Американские ученые из Университета Иллинойса в Чикаго обнаружили, что с возрастом уровень PF4 значительно снижается. Это ослабление контроля над кроветворными стволовыми клетками приводит к нарушению их работы и повышает вероятность развития воспалительных процессов, онкологических заболеваний крови и сердечно-сосудистых проблем.
В молодом организме PF4 выполняет функцию "регулятора роста": он контролирует распределение и деление кроветворных стволовых клеток, не позволяя им чрезмерно размножаться. С возрастом эта система контроля ослабевает, клетки начинают делиться чаще, накапливают генетические мутации и постепенно теряют способность создавать полноценные лимфоциты, что ослабляет иммуните ...>>
Музыка юности остается с нами навсегда
30.10.2025
Музыка сопровождает человека всю жизнь, но некоторые мелодии и песни оставляют особенно глубокий след в памяти. Ученые давно замечали, что композиции из подросткового возраста вызывают сильные эмоции даже спустя десятилетия, и недавно международная команда исследователей под руководством Университета Ювяскюля (Финляндия) подтвердила этот эффект научно.
В исследовании приняли участие около 2000 человек из 84 стран. Ученые выявили явление, которое они назвали "пиком воспоминаний": эмоциональная привязка к музыке достигает максимума примерно в 17 лет. Именно песни этого периода чаще всего остаются значимыми и вызывают яркие эмоции долгие годы спустя.
Интересно, что у мужчин и женщин наблюдаются разные временные рамки этого пика. У мужчин он приходится примерно на 16 лет, тогда как у женщин - на 19. Исследователи объясняют это различие особенностями формирования музыкальной идентичности: юноши чаще ищут самостоятельность и бунт, а девушки связывают музыку с личными отношениями и пере ...>>
Сплав Cr-Mo-Si с уникальными свойствами
30.10.2025
Разработка материалов, способных работать в экстремальных условиях, остается одной из ключевых задач современной инженерии. Особенно это важно для авиации и энергетики, где повышение термостойкости компонентов напрямую влияет на эффективность и надежность оборудования. Международная группа исследователей объявила о создании нового металлического сплава, обладающего уникальным сочетанием свойств: высокой термостойкостью, устойчивостью к коррозии и сохранением пластичности даже при комнатной температуре.
Новый сплав содержит хром, молибден и всего 3 атомных процента кремния. Именно кремний способствует формированию плотного слоя оксида хрома на поверхности металла, который действует как невидимый барьер против кислорода и азота при высоких температурах. В отличие от предыдущих сплавов, этот защитный слой формируется без хрупких силицидов, которые обычно снижали пластичность и делали материалы склонными к трещинам.
По словам профессора Мартина Гайльмайера из Института технологий Кар ...>>
Открыт лед, замерзающий при комнатной температуре
29.10.2025
Изучение воды продолжает приносить удивительные открытия: несмотря на то, что эта жидкость кажется хорошо известной, она способна проявлять необычные свойства в экстремальных условиях. Международная команда ученых недавно обнаружила новый вид льда, который формируется при комнатной температуре, если вода подвергается сильному давлению. Это открытие не только расширяет наши знания о воде, но и помогает лучше понять процессы в недрах планет и их спутников.
Исследователи из Корейского института стандартов и науки совместно с европейскими коллегами, работающими на рентгеновском лазере на свободных электронах (XFEL) в Германии, провели серию экспериментов с водой в динамической ячейке с алмазными наковальнями. Давление изменялось от 0,001 гигапаскаля до 120 гигапаскалей в секунду - в миллионы раз выше атмосферного, при этом температура поддерживалась около 25 °C, близкой к комнатной. В течение сотен циклов ученые наблюдали, как вода многократно замерзает и тает, фиксируя каждый этап с ис ...>>
  Случайная новость из Архива Увеличение жизни ультрахолодных молекул
17.08.2021 
Исследование молекул, охлажденных до очень низких температур, важно для развития квантовых симуляций, прецизионных измерений, ультрахолодной химии и многого другого. Для этого физикам нужно научиться охлаждать их, собирать и удерживать, а также защищать от разрушения. Последний фактор существенно ограничивает круг экспериментов и явлений, которые ученые могли бы исследовать в таких системах.
 
 Главный канал распада ультрахолодных молекул - это их неупругие столкновения друг с другом. Чтобы их избежать, ученые применяют экранирование, то есть создание дополнительного отталкивания между молекулами на расстояниях, на которых начинаются неупругие процессы взаимодействия. На сегодняшний день уже реализовано экранирование атомов и молекул множеством различных методов. Например, ученые научились защищать ультрахолодные молекулы KRb друг от друга с помощью постоянных электрических полей. Несмотря на достигнутый прогресс, физики постоянно ищут новые режимы, которые бы позволили увеличить время жизни таких молекул.
 
 Исследователи из Кореи и США при участии Тиджс Карман (Tijs Karman) из Кембриджского университета использовали микроволновое излучение, чтобы экранировать друг от друга две молекулы CaF, удерживаемых оптическими пинцетами. Они показали, что управлением параметрами внешний полей можно переключать молекулы между режимами экранирования и антиэкранирования, меняя их время жизни в 24 раза.
 
 Идея такого экранирования основывается на понятии "одетых" состояний. Если двухуровневую систему облучать ("одевать") резонансным переменным полем, то населенность ее состояний будет осциллировать с частотой Раби. Управляя параметрами поля, можно добиться того, что между молекулами, находящихся в "одетых" состояниях, возникнет сильное дальнодействующее диполь-дипольное взаимодействие, которое может быть как притягивающим, так и отталкивающим. Последнее зависит в том числе и от того, какие именно состояния "одеваются" полем.
 
 Для реализации этого принципа авторы предварительно готовили две молекулы CaF, пойманные каждая в свою ловушку оптического пинцета, приложив магнитное поле величиной 27 гаусс. После чего физики на какое-то время сталкивали их в присутствии микроволнового поля, разносили в разные стороны и с помощью метода лямбда-визуализации смотрели, распались они или нет. Таким образом, ученые смогли построить долю "выживших" молекул в зависимости от времени взаимодействия. Меняя конфигурацию "одетых" состояний, авторы могли влиять на это число, сравнивая его с числом "голых" молекул, которые не испытывали воздействия микроволнами. 
 | 
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025