Алмазный квантовый компьютер
12.04.2012
Ученые из Университета Южной Калифорнии создали квантовый компьютер на основе алмаза, преодолев проблему декогеренции - "шума", который является одним из самых главных технических препятствий на пути создания квантовых компьютеров.
Современные квантовые компьютеры, как правило, очень малы и пока не могут конкурировать в быстродействии с традиционными компьютерами. Эксперимент американских ученых показывает жизнеспособность твердотельных квантовых компьютеров, которые, в отличие от современных опытных образцов на жидкой основе, могут быть масштабированы и применяться на практике. Ученые создали алмазный квантовый компьютер с двумя квантовыми битами, так называемыми кубитами. В отличие от традиционных битов, которые работают с состояниями "1" или "0", квантовый компьютер может работать, как с "1" и "0", так и с обоими состояниями одновременно. Это называется состоянием суперпозиции и позволяет квантовым компьютерам выполнять миллионы вычислений одновременно.
Как и все алмазы, алмаз, используемый в эксперименте, имел примеси. В ювелирном деле чем больше примесей, тем менее ценен алмаз, поскольку это снижает его блеск и прозрачность. Однако для квантового компьютера примеси, наоборот, полезны. Так, спин ядра азота внутри алмаза стал первым кубитом, а электрон - вторым. Электроны меньше ядер и выполняют вычисления гораздо быстрее, но они также подвержены более быстрой декогеренции. Кубит на основе ядра (которое по размеру больше электрона) работает гораздо стабильнее, хоть и медленнее. Благодаря использованию ядра в качестве кубита время декогеренции удалось растянуть на миллисекунды, чего достаточно для надежных вычислений.
Хотя твердотельные вычислительные системы существовали и раньше, американским ученым впервые удалось "встроить" в нее защиту от декогеренции и сделать важный шаг на пути к применению квантовых компьютеров. Команда исследователей доказала, что их система действительно работает в квантовом режиме и практически полностью соответствует алгоритму Гровера.
<< Назад: Прозрачный чип памяти 12.04.2012
>> Вперед: У Земли есть свои минилуны 11.04.2012
 Последние новости науки и техники, новинки электроники:
Новый взляд на магнитное поле Земли
31.10.2025
Магнитное поле Земли долгое время считалось относительно стабильной структурой с предсказуемой полярностью. Однако последние исследования японских ученых показывают, что электрическая организация магнитосферы гораздо сложнее и динамичнее, чем предполагалось ранее.
Команда исследователей из Киотского, Нагояского и Кюсюского университетов обнаружила, что заряженные области магнитосферы обладают противоположной полярностью по сравнению с традиционными представлениями. Так, утренняя сторона магнитного щита имеет отрицательный заряд, тогда как вечерняя - положительный, вопреки прежним теориям. Юсуке Эбихара из Киотского университета отмечает, что "электрическая сила и распределение зарядов являются следствием, а не причиной движения плазмы".
Исследователи пришли к этим выводам с помощью масштабного магнитогидродинамического моделирования, имитирующего взаимодействие солнечного ветра с геомагнитным полем Земли. Моделирование позволило в деталях проследить, как потоки плазмы формируют э ...>>
Влияние белка PF4 на старение крови
31.10.2025
С возрастом наш организм претерпевает множество изменений, в том числе на уровне крови и иммунной системы. Недавние исследования показали, что ключевым фактором этих изменений может быть белок PF4, или platelet factor 4, который играет важную роль в регуляции стволовых клеток костного мозга.
Американские ученые из Университета Иллинойса в Чикаго обнаружили, что с возрастом уровень PF4 значительно снижается. Это ослабление контроля над кроветворными стволовыми клетками приводит к нарушению их работы и повышает вероятность развития воспалительных процессов, онкологических заболеваний крови и сердечно-сосудистых проблем.
В молодом организме PF4 выполняет функцию "регулятора роста": он контролирует распределение и деление кроветворных стволовых клеток, не позволяя им чрезмерно размножаться. С возрастом эта система контроля ослабевает, клетки начинают делиться чаще, накапливают генетические мутации и постепенно теряют способность создавать полноценные лимфоциты, что ослабляет иммуните ...>>
Музыка юности остается с нами навсегда
30.10.2025
Музыка сопровождает человека всю жизнь, но некоторые мелодии и песни оставляют особенно глубокий след в памяти. Ученые давно замечали, что композиции из подросткового возраста вызывают сильные эмоции даже спустя десятилетия, и недавно международная команда исследователей под руководством Университета Ювяскюля (Финляндия) подтвердила этот эффект научно.
В исследовании приняли участие около 2000 человек из 84 стран. Ученые выявили явление, которое они назвали "пиком воспоминаний": эмоциональная привязка к музыке достигает максимума примерно в 17 лет. Именно песни этого периода чаще всего остаются значимыми и вызывают яркие эмоции долгие годы спустя.
Интересно, что у мужчин и женщин наблюдаются разные временные рамки этого пика. У мужчин он приходится примерно на 16 лет, тогда как у женщин - на 19. Исследователи объясняют это различие особенностями формирования музыкальной идентичности: юноши чаще ищут самостоятельность и бунт, а девушки связывают музыку с личными отношениями и пере ...>>
Сплав Cr-Mo-Si с уникальными свойствами
30.10.2025
Разработка материалов, способных работать в экстремальных условиях, остается одной из ключевых задач современной инженерии. Особенно это важно для авиации и энергетики, где повышение термостойкости компонентов напрямую влияет на эффективность и надежность оборудования. Международная группа исследователей объявила о создании нового металлического сплава, обладающего уникальным сочетанием свойств: высокой термостойкостью, устойчивостью к коррозии и сохранением пластичности даже при комнатной температуре.
Новый сплав содержит хром, молибден и всего 3 атомных процента кремния. Именно кремний способствует формированию плотного слоя оксида хрома на поверхности металла, который действует как невидимый барьер против кислорода и азота при высоких температурах. В отличие от предыдущих сплавов, этот защитный слой формируется без хрупких силицидов, которые обычно снижали пластичность и делали материалы склонными к трещинам.
По словам профессора Мартина Гайльмайера из Института технологий Кар ...>>
Открыт лед, замерзающий при комнатной температуре
29.10.2025
Изучение воды продолжает приносить удивительные открытия: несмотря на то, что эта жидкость кажется хорошо известной, она способна проявлять необычные свойства в экстремальных условиях. Международная команда ученых недавно обнаружила новый вид льда, который формируется при комнатной температуре, если вода подвергается сильному давлению. Это открытие не только расширяет наши знания о воде, но и помогает лучше понять процессы в недрах планет и их спутников.
Исследователи из Корейского института стандартов и науки совместно с европейскими коллегами, работающими на рентгеновском лазере на свободных электронах (XFEL) в Германии, провели серию экспериментов с водой в динамической ячейке с алмазными наковальнями. Давление изменялось от 0,001 гигапаскаля до 120 гигапаскалей в секунду - в миллионы раз выше атмосферного, при этом температура поддерживалась около 25 °C, близкой к комнатной. В течение сотен циклов ученые наблюдали, как вода многократно замерзает и тает, фиксируя каждый этап с ис ...>>
  Случайная новость из Архива Органические лазеры для цветных дисплеев и проекторов
29.05.2017 
Ученые из Исследовательского центра органической фотоники и электроники (Center for Organic Photonics and Electronics Research, OPERA), университета Кюсю, Япония, разработали новый тип тонкопленочного органического лазера с оптической накачкой. И этот лазер, благодаря использованию ряда инновационных решений, способен излучать свет непрерывно в течение 30 миллисекунд, что в 100 раз дольше, чем это могли делать подобные устройства предыдущего поколения.
 
 В отличие от твердотельных лазеров на основе неорганических материалов, используемых обычно в лазерных оптических приводах и лазерных указках, органические лазеры используют для усиления света тонкий слой, состоящий из органических молекул строго определенного типа вещества. Одним из главных преимуществ органических лазеров является то, что при их помощи достаточно получить свет любого цвета и оттенка, для этого достаточно лишь использовать молекулы определенного вещества с подходящими оптическими свойствами.
 
 Специалисты работают над созданием органических лазеров уже достаточно долгое время. Но их усилия пока еще не принесли значительных результатов из-за того, что органические вещества достаточно быстро деградируют, находясь в среде, через которую проходят значительные потоки энергии. Деградация молекул приводит к резкому увеличению потерь энергии и делает дальнейшую работу органического лазера практически невозможной.
 
 Японским ученым удалось найти решение проблемы и увеличить время непрерывного излучения лазером когерентного света при помощи использования трех различных методов. Первой частью решения стал материал, из которого было изготовлено тело органического лазера, который эффективно поглощает свет с любой длиной волны, отличной от длины волны излучаемого света. Этот эффект придает лазеру высокую эффективность за счет образования троек эксионов, квазичастиц, состоящих из связанного друг с другом электрона и электронной дырки.
 
 Тепловая деградация органического материала была снижена за счет создания всего устройства на прозрачной кремниевой подложке, а верхняя часть структуры лазера была приклеена при помощи специального полимера к основанию из сапфирового стекла. Кремний и сапфир являются достаточно хорошими проводниками тепла, что обеспечивает весьма хороший теплоотвод и эффективное охлаждение лазера во время работы. 
 
 И третьей частью решения стал слой материала, помещенный под слоем органического тела лазера, который обеспечил оптическую обратную связь, регулирующую соотношение количества поглощаемого ультрафиолетового света с количеством излучаемого света. Такая обратная связь позволяет уменьшить количество поглощаемой лазером энергии накачки, что снижает количество потерь и исключает возможность перегрева, ведущего к деградации органического материала.
 
 Используя органические лазеры совместно с лазерами на базе неорганических материалов, можно будет достаточно легко получать цвета и оттенки света, которые невозможно или очень тяжело получить при помощи обычных лазеров. И такие гибридные лазерные устройства могут найти широкое применение в датчиках различных типов, в спектроскопии, в оптических коммуникациях и в технологиях отображения информации.
 
 В своей дальнейшей работе японские ученые будут искать дополнительные методы и решения, которые позволят им увеличить время непрерывной работы их органических тонкопленочных лазеров. Помимо этого, будет проведена работа, направленная на прямое использование электрического тока в качестве основного источника энергии для накачки органического лазера. 
 | 
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025