Алмазные нанонити эффективнее Li-Ion батарей
12.04.2021
Ученые из Технологического университета Квинсленда (Австралия) спроектировали новый накопитель энергии, в основе которого лежит пружина. Только в данном случае она изготовлена из чрезвычайно перспективного инновационного материала - алмазных нанонитей. Пока что есть лишь небольшие экспериментальные образцы этого материала, но в ближайшем будущем, когда производство нитей станет дешевым и доступным, они превратятся в основу для множества новых технологий.
Нанонить представляет собой одномерную структуру в виде цепочки атомов углерода, которая достаточно гибка, чтобы скручивать ее произвольным образом, но при этом и достаточно прочна, чтобы выдерживать подобные деформации. Если взять несколько нанонитей и связать их в пучок, его можно закрутить и получить крохотную пружину. При сжатии она будет накапливать энергию, при раскручивании высвобождать ее - это старый добрый принцип, на основе которого работает множество заводных механизмов.
Моделирование показало, что гипотетический накопитель из такого материала обладает емкостью 1,76 МДж/кг энергии. Это на 4-5 порядков больше, чем у стальных пружин, и втрое выше, чем у литий-ионных батарей. Дополнительный бонус - механические системы в разы стабильнее химических аналогов, в них исключен риск возгорания и детонации. Также подобный накопитель не содержит токсичных веществ, а его утилизация не представляет проблем. Область применения подобных батарей чрезвычайно широка - от космоса до микроимплантантов.
<< Назад: Внедорожник на солнечной энергии Humble Motors Humble One 12.04.2021
>> Вперед: Чип, определяющий количество алкоголя в крови 11.04.2021
Последние новости науки и техники, новинки электроники:
Новый взляд на магнитное поле Земли
31.10.2025
Магнитное поле Земли долгое время считалось относительно стабильной структурой с предсказуемой полярностью. Однако последние исследования японских ученых показывают, что электрическая организация магнитосферы гораздо сложнее и динамичнее, чем предполагалось ранее.
Команда исследователей из Киотского, Нагояского и Кюсюского университетов обнаружила, что заряженные области магнитосферы обладают противоположной полярностью по сравнению с традиционными представлениями. Так, утренняя сторона магнитного щита имеет отрицательный заряд, тогда как вечерняя - положительный, вопреки прежним теориям. Юсуке Эбихара из Киотского университета отмечает, что "электрическая сила и распределение зарядов являются следствием, а не причиной движения плазмы".
Исследователи пришли к этим выводам с помощью масштабного магнитогидродинамического моделирования, имитирующего взаимодействие солнечного ветра с геомагнитным полем Земли. Моделирование позволило в деталях проследить, как потоки плазмы формируют э ...>>
Влияние белка PF4 на старение крови
31.10.2025
С возрастом наш организм претерпевает множество изменений, в том числе на уровне крови и иммунной системы. Недавние исследования показали, что ключевым фактором этих изменений может быть белок PF4, или platelet factor 4, который играет важную роль в регуляции стволовых клеток костного мозга.
Американские ученые из Университета Иллинойса в Чикаго обнаружили, что с возрастом уровень PF4 значительно снижается. Это ослабление контроля над кроветворными стволовыми клетками приводит к нарушению их работы и повышает вероятность развития воспалительных процессов, онкологических заболеваний крови и сердечно-сосудистых проблем.
В молодом организме PF4 выполняет функцию "регулятора роста": он контролирует распределение и деление кроветворных стволовых клеток, не позволяя им чрезмерно размножаться. С возрастом эта система контроля ослабевает, клетки начинают делиться чаще, накапливают генетические мутации и постепенно теряют способность создавать полноценные лимфоциты, что ослабляет иммуните ...>>
Музыка юности остается с нами навсегда
30.10.2025
Музыка сопровождает человека всю жизнь, но некоторые мелодии и песни оставляют особенно глубокий след в памяти. Ученые давно замечали, что композиции из подросткового возраста вызывают сильные эмоции даже спустя десятилетия, и недавно международная команда исследователей под руководством Университета Ювяскюля (Финляндия) подтвердила этот эффект научно.
В исследовании приняли участие около 2000 человек из 84 стран. Ученые выявили явление, которое они назвали "пиком воспоминаний": эмоциональная привязка к музыке достигает максимума примерно в 17 лет. Именно песни этого периода чаще всего остаются значимыми и вызывают яркие эмоции долгие годы спустя.
Интересно, что у мужчин и женщин наблюдаются разные временные рамки этого пика. У мужчин он приходится примерно на 16 лет, тогда как у женщин - на 19. Исследователи объясняют это различие особенностями формирования музыкальной идентичности: юноши чаще ищут самостоятельность и бунт, а девушки связывают музыку с личными отношениями и пере ...>>
Сплав Cr-Mo-Si с уникальными свойствами
30.10.2025
Разработка материалов, способных работать в экстремальных условиях, остается одной из ключевых задач современной инженерии. Особенно это важно для авиации и энергетики, где повышение термостойкости компонентов напрямую влияет на эффективность и надежность оборудования. Международная группа исследователей объявила о создании нового металлического сплава, обладающего уникальным сочетанием свойств: высокой термостойкостью, устойчивостью к коррозии и сохранением пластичности даже при комнатной температуре.
Новый сплав содержит хром, молибден и всего 3 атомных процента кремния. Именно кремний способствует формированию плотного слоя оксида хрома на поверхности металла, который действует как невидимый барьер против кислорода и азота при высоких температурах. В отличие от предыдущих сплавов, этот защитный слой формируется без хрупких силицидов, которые обычно снижали пластичность и делали материалы склонными к трещинам.
По словам профессора Мартина Гайльмайера из Института технологий Кар ...>>
Открыт лед, замерзающий при комнатной температуре
29.10.2025
Изучение воды продолжает приносить удивительные открытия: несмотря на то, что эта жидкость кажется хорошо известной, она способна проявлять необычные свойства в экстремальных условиях. Международная команда ученых недавно обнаружила новый вид льда, который формируется при комнатной температуре, если вода подвергается сильному давлению. Это открытие не только расширяет наши знания о воде, но и помогает лучше понять процессы в недрах планет и их спутников.
Исследователи из Корейского института стандартов и науки совместно с европейскими коллегами, работающими на рентгеновском лазере на свободных электронах (XFEL) в Германии, провели серию экспериментов с водой в динамической ячейке с алмазными наковальнями. Давление изменялось от 0,001 гигапаскаля до 120 гигапаскалей в секунду - в миллионы раз выше атмосферного, при этом температура поддерживалась около 25 °C, близкой к комнатной. В течение сотен циклов ученые наблюдали, как вода многократно замерзает и тает, фиксируя каждый этап с ис ...>>
Случайная новость из Архива Охлаждение крыльев бабочек
23.02.2020
Чтобы взлететь, бабочке нужно в прямом смысле разогреться: если мышцы у нее будут недостаточно теплыми, они просто не смогут сокращаться с той скоростью, которая нужна для полета. Поэтому, если бабочка слишком сильно остыла - например, после холодной ночи - она выползает на солнце и греется. Но ведь греются у нее не только грудные мышцы, но и все тело, и крылья тоже, причем крылья нагреваются быстрее мышц. И может получиться так, что к тому времени, когда мышцы будут готовы взлететь, как надо, крылья окажутся перегретыми.
Хотя крылья бабочек кажутся нам неживыми - в том же смысле, в каком неживыми являются птичьи перья или наши ногти - в них все-таки есть участки живой ткани: это сосуды, пронизывающие крыло, по которым течет гемолимфа (аналог крови у насекомых), и так называемые андроконии - группы специализированных чешуек, которые испаряют феромоны. Перегрев для живых зон крыла был бы некстати. Но у бабочек есть некоторые хитрости, которые позволяют охладить перегретое крыло.
Исследователи из Колумбийского университета вместе с коллегами из других научных центров разработали специальный метод, с помощью которого можно было оценить теплоизлучение в разных точках крыла бабочки (обычная инфракрасная камера здесь не подходила - она не могла даже отличить теплоизлучение крыла от теплоизлучения фона). Новый метод опробовали на бабочках 50 видов, и оказалось, что живые зоны крыльев у них покрыты особыми трубчатыми наноструктурами, которые служат как бы радиатором; кроме того, и сосуды, и пахучие участки несут более толстый слой хитина, который тоже помогает рассеивать тепло.
У некоторых бабочек обнаружилась еще и добавочная система охлаждения: так, у самцов голубянок Satyrium caryaevorus и Parrhasius m-album в крыльях есть сосудистая структура, которая прокачивает кровь через пахучие органы - эти сосуды сокращаются несколько десятков раз в минуту. Такое псевдосердце в крыльях делает их тяжелее, но бабочки, видимо, готовы смириться с дополнительной тяжестью в крыле, лишь бы не дать ему перегреться и не дать испортиться собственному источнику феромонов.
|
Смотрите полный Архив новостей науки и техники, новинок электроники
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua
2000-2025